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SUNMARY

A general integral form of the boundary-lsyer equation is derived
from the Prandtl partial-differential boundary-layer equation. The
general integrel equation, valid for either laminar or turbulent incom-
pressible boundary-layer flow, contains the Von Karmén momentum equation,
the kinetic-energy equation, and the Loltslanskii equation as special
cases.

In an attempt to obtain a practical method for the calculation of
the development of the.turbulent boundary layer, use is made of the
experimental finding-that all the velocity profiles of the turbulent
boundary layer form essentially a single-parameter family. The general
equation is thereby changed to a simpler one from which en equation for
the space rate of change of the shape parameter of the turbulent boundary
layer can be obtained.

The resulting equation for the space rate of change of the velocity-
profile parameter is restricted by the assumption that the velocity
" profiles of the turbulent boundary layer can be approximated by power
profiles. Two of the resulting equations are used to calculate the dis-
tribution of the profile shape parameter over an airfoil for one experi-
mentally determined pressure distribution. Although different assump-
tions were tried for the shearing stress across the boundary leyer, the
calculated distribution of the profile shape parameter did not agree
exactly with the experimental distribution.

" An -examination is made of the effect of using the experimentally
determined single-parameter family of velocity profiles instead of the
power profiles on certain functions that occur in the equation for the
space rate of change of the veloclty-profile parameter. One calculation
of the distribution of the profile shape paremeter over an airfoil is
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also made for the experimentally determined pressure distribution by
using the single-parameter family of velocity profiles found from experi-
ment. A comparison of the results with those of a calculation made with
the same assumptions except for the use of power profiles shows some
difference near the separation point. It is believed, however, that the
apparent lack of reliebility of the speciflic equations used to make the
calculations is caused mainly by the lack of precise knowledge concerning
the surface shear and the distribution of the shearing stress across the
turbulent boundary layer. The present analysis emphasizes the need for
information concerning the shearing stresses in turbulent boundary layers.

INTRODUCTION

An outstanding problem in aerodyneamic theory is to calculate whether
the flow will separate from the surface of a specific body and, if so,
where the separation will occur. The concept of the boundary la.yer and
the equations that describe the flow in it, introduced by Prandtl (refer-
ence 1) and first worked out in some detail by Blasius (reference 2),
reduce the problem to solving the Prandtl boundary-layer equation when
the flow is laminar. Because of the mathematical difficulty of solving
the equation, approximate methods were developed for the calculation of
the properties of the laminar boundary layer (reference 3). In some of
these methods, for example, the Pohlhausen method (reference 3) and the
Wieghardt method (reference L4), a functional form is chosen for the veloc-
ity distribution through the boundary layer and is combined with elther
the Von Karmsén momentum equation alone (reference 5) or with both the
Von Kérmsn momentum equation and the kinetic-energy equation (reference 4).
The result is the replacement of the Prandtl partial-differential equation
by one ordinery dlfferential equation in the Pohlhausen method and by two
ordinary differential equetions in the Wieghardt method. A solution of
the ordinary differential equation or equetions provides the boundary-
layer velocity profiles along the body These and other approximate
methods that use only the Von Kermsn momentum equation, or the momentum
and kinetic-energy equations together, do not satisfy exactly the Prandtl
boundary-layer equation.

Because the flow in the boundary layer is more often turbulent than
laminar in cases encountered in engineering, the problem of calculating
. the separation point is of even more importance for turbulent than for
laminar boundary lsyers. In spite of the importance of the problem,
however, less progress has been made in the development of methods for
the calculation of the behavior of turbulent boundary layers than for
laminar boundary layers. The lack of progress stems from the absence -of
an explicit independent equation for the shearing stress that is accurate
enough to lead to a description of the flow when used with the Prandtl
equation.

a
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The main attempts to obtain methods for the calculation of the
behavior of the incompressible turbulent boundary layer in the presence
of pressure gradients are those of references 6 to 12. The results of
these attempts are unsatisfactory either because the assumptions upon
which they rest are incorrect or because the equations used to make cal-
culations were not derived from the boundary-layer equations.

The analysis of reference 6 is based on the assumption that the
velocity profile is a single-valued function of the ratio of the pressure
gradient to the skin friction, an assumption shown to be incorrect by
later investigators (for example, see reference 12). In the analyses of
references T, 10, 11, and 12 the momentum equation is used, together with
an auxiliary equation, to calculate the distribution of velocity profiles
over a surface. In each of these four methods the auxiliary equation is
not derived from the boundary-layer equations but is empirical.

In reference 8, the equation that gives the variation of the mixing
length across a pipe (reference 3) was used to calculate the velocity
profiles. The fact that the mixing-length distribution across the bound-
ary layer is not the same as across plpes is shown in references 13 to 15.

Reference 9 does not provide a method for the calculation of the
distribution of turbulent velocity profiles along a surface. It does,
however, suggest that separation of the turbulent boundary layer always
occurs when the numerical value of the nondimensional pressure gradient
reaches an empirical constant.

The purpose of the present investigation is to begin with the
boundary-layer equation for incompressible flow and to proceed as closely
to a method for the calculation of the behavior of the turbulent boundary
layer as the present knowledge of the turbulent boundary layer permits.

At first it might appear that the use of empirical auxiliary equa-
tions in methods for the calculation of the behavior of turbulent bound-
ary layers can be avoided by developling a method similar to the Pohlhausen
method which requires the solution of only the Von Kérmén momentum equa-
tion. For turbulent flow, however, in contrast with laminar flow, the
conditions on the behavior of the velocity profile at the surface that
can be obtained from the boundary-layer equation seem to be of little or
no use for the determination of the shape of the velocity profile across
the boundary layer. This difference between laminar and turbulent flow
makes inapplicable the Pohlhausen process in which a type of function is
chosen to represent the velocity profiles, the function for the velocity
profiles is combined with the Von Kdérmen momentum equation, and the
resulting ordinary differential equation for the space rate of change of
the profile shape parameter is solved.
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* An auxiliary equation for the calculation of the behavior of the
turbulent boundary layer can, however, be obtained from the boundary-
layer equation by making use of the experimentally verifiable fact
(references 7, 10, 11, 1L, and 15) that all velocity profiles of the
turbulent boundary layer form essentially a single-parameter family of
curves. In the present analysis the Loitsianskii equation (reference 16)
is generalized by multiplying the Prandtl boundary-layer equation not
only by an arbitrary power of the velocity in the boundary layer but also
by an arbitrary power of the distance from the surface. The resulting
equation is then integrated across the boundary layer and provides a
general integral form of the boundery-layer equation, valid for either
leaminar or turbulent flow. This general integral  form of the boundary-
layer equation reduces to the Loitsianskii equation when the distance
from the surface is raised to the zeroeth power, to the Von Kérmén momen-
tum equation when both the distance from the surface and the velocity are
raised to the zeroeth power, and to the kinetic-energy equation when the
distance from the surface is raised to the zeroeth power and the velocity
is raised to the first power.

When use is made of the assumption of a single-paremeter family of
velocity profiles, the general integral form of the boundary-layer equa-
tion becomes a general equation for the rate of change along the surface
of the velocity-profile shape paremeter. This equation for the rate of
change of the velocity-profile shape parameter is the desired auxiliary
equation.

The assumption of the single-parameter family of velocity profiles
changes the problem from one of finding a solution of a partial-
differentlal equation, the Prandtl boundery-layer equetion, to one of
finding & solution of two simultaneous ordinary differential equations,
the equation for the rate of change of the shape parameter and the
Von K&rmfn momentum equation. The differential equation for the rate of
change of the shape parameter, however, cannot result in a solution of
the problem in the present analysis because a knowledge of the shearing
stress 1s lacking. In the present analysis various assumptions are made
for the distribution of shearing stress through the boundary layer, and
the distribution of the shape parameter over the surface of an airfoil
is then calculated. Because of the arbitrary assumptions for the shear
distribution and the use of a Flat-plate skin-friction formula, precise
agreement between the calculated and experimentelly obtalned distributions
of the shape parameter is not obtained.

'The problem of finding the shearing stress in the turbulent boundary
layer remains. It is believed, however, that if suitable epproximations
are, found for the shear and surface friction, the equations presented
herein should enable the development of the turbulent boundary layer to
be calculated with an accuracy sufficient for engineering purposes.
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The present work was begun while Dr. Lin was temporarily at the
Langley Laboratory and wes continued by correspondence.

SYMBOLS R

A arbitrary positive integer in shear polynomial
a,b,c coefficients in polynomial for f t < d§
B exponent in expression for shear
c reference chord
Fo,Fq functional notation
£ =2

U
g = .I.

To
g derivative of shear polynomial for A =0
=) coefficient of A 1in expression for b__%
E=2

6

Hy equilibrium value of H for w =0

e 2 [t e[ L

I = en+1f P - o) [f - 1) dﬂd"
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5 y
= L n-1(7 _ got+l _
T=amidy 7 ( )'j; (1 f)d{|d?r

on+l
1 H-1
Jya,l coefficients in polynomial for f t2 g—% ag
0
K ratio of kinetic-energy thickness to momentum thickness
s}
(l f (1 - £2)f dy)
8Jo

gkt = &

dH
" function of E ('(—HKE-l—)K)
L = —1—1 £(1 - -L)yn gy

gu+L Jo

gatL Jo .
n exponent of u in derivation of general equation

1 ® 1
e [ -t

6 0
g =W

dH
n exponent of Yy *in derivetion of general equation
P coefficient of @ in equation for 0 % .

= tP

P exponent in equation for power profiles, f

P static pressure
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0-L [yl - )y
) .

gn

Yo

5%

"
o

=
1]
S

radius of body of revolution

coefficient of ¢ in equation for 6 g

veloclty parallel to surface and at outer edge of
boundary layer

velocity parellel to surface and inside boundary layer,
positive in direction of positive x

velocity perpendicular to surface and inside boundary
layer, positive in direction of positive y

value of v at y =0

coordinate parallel to surface, positive in direction
from leading to trailing edge

coordinate perpendicular to surface, positive outward
from surface )

smallest value of y for which the difference U - u 1is
negligible

5
displacement thickness ( f (1 - f)dy)
0

3]
momentum thickness (JF £(1 - f)d%)
0
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d;

=2 P

To dx
13 viscosity
£ = —% '

1

E = A - -2-f f dg)
° ®-1 KJyg
P density
T shearing stress
To surface shearing stress
=0

U2

v
y=2

U
@D = -e— Q

U dx

-, ANALIYSIS

Derivation of General Equation

The general equation is derived for the body of revolution because
the equation for two-dimensional flow can be obtained from this equation
by letting the radius of a transverse section of the body of revolution

become infinite.

The boundary-layer equation of motion for the body of revolution,
also valid for two-dimensional flow, from reference 3 is

du . _du.

14pm 3
—t Vom = o e 4+ = 1
qu g p dx p ()

Y

— m v rmm e e  — — —————
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Q

After multiplying through by u™, making use of the equation of conti-
nuity that 1s valid in the boundary layer of a body of revolution
(reference 3)

dr
a_u-i-é_v+£.__9=o
ox Jdy To dx
and noting that
d A
R
dx dx
equation (1) becomes
w*lfou dv  w &ro) | _uw ™ ™ _
m+1\ox Ody To dx m+1 Ox m+1 dy
wfy M, 101 (2)
dx p oy

After equation (2) is written in a form in which each term vanishes at
the outer edge- of the boundary layer, each term of the equation is multi-

plied by yo and integrated from y =0 to y = &. The result (see
appendix A for detailed development) is

(n+1)NE-x+e(—-nI]) edU[N( +2) -n(T - M) - L(m +1)] +

T
T

La (3)
311

....:.?[N-n(J-M)]-n =-(m+l)-—f iy

Equation (3) is the general integral form of the boundary-layer equation.
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The- Von Kérmén momentum equation is obtained from equation (3) by
letting m = 0 and n = O0; the equation for kinetic energy is obtained
by letting m =1 and n = 0, and the equation for moment of momentum

is obtained by letting m =0 and n = 1.

In the case m =n =0,

5
Ne=f(1-f)fdy=9
0

or
N=1
Also,
o]
I.G=f(f—l)dy=-6*
o -
or

= -H

L=
0

It can be easily verified that all the integrals, except Q, involved in
equation (3) have finite integrands as n approaches O. The limit nQ,
however, approaches unity as n apprQaches O; thus

nQel = nﬁ yn‘l(l - fm"'l)dy )
0]

[yn(l - fm”l?:lz - f y® g—y(l - £+ gy

The first term drops out .if n 74 0. Then, b;{r taking the 1limit n-—>0,
the result is

lim nQeR =1
n—>0

Hence, when m = n = 0, equation (3) becomes

ae . 6 au g dro Vo Tp
dx+de(H+2)+r°dx U-;Eé (%)
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Equation (4) is the momentum equation for flow over a body of revolution

with flow through the surface. For two-dimensional flow, equation (L)
becomes

v T,
B ,8Wg,0) .20 (5)
ax  Uax L
When the value of %2 from equation (4) 1s substituted into equation (3),
the result is dx

h ]

e(‘}—‘i-nxl) +%:—E{n(N-L) -n[(7 - M) + n(E + 2)] -L—NH}-
%Z%nKJ-M)+I‘I]-%)EQ-N(n+lﬂ

T__§m+1)f fmqnagdn+(n+l)N (6)

where

-
g=_
To

The assumptions contained in equation (6) are the usual boundary-layer '
assumptions. Equation (6) is valid for both laminar and turbulent flow.
Form of Equation (6) for Single-Paremeter Family
of Velocity Profiles
Equation (6) is now to be placed in a form valid when the velocity

profiles form a single-parameter family of curves (f = £(q,H)). For

this purpose the term Il of equation (6) is modified in the following
manner:

By definition,

] J
+1 - g+ o(1 - )

[EPRUTI S —— —
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Because f depends only on 1 and H,

o(1 - f) _o(1 - £) oy , o(1 - £) aH
ox i ox OH ax

From the definition of 1

g
£18

=0
e
then

y y
f CICNENE S RF S . a(l dy+aHL/~Ya(1-f)
0 ox @ dxJo

or, after an integration by parts of the first term on the right-hand
side, the result is

dr-£) . _ las ) _J"’ ) df
»E' = E(l ) o(l f)d;J dx~/; andy

The expression for Ilen"'l then becomes

5
50" = %Z‘%jj (1 - )ay +%§fo et - ™ ay +

—— e e ——— = -
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But
o)
f Q- +l) gy = Mpn+l
0
e}
f 1 - fm+1)f dy = Ne%+L
0
and
5 y
f yol{ - 24 f (1 - flay|ay = Jon+L
0 0 - .
Then with

s}
f yn-l(l - fm+1)(j‘y a_f dy) dy = I9n+l
0 o oH

the expression for I; can be written as

1l de dH
Ii===(-M+N+J) -I =
1=5 5 ) ol (7)
When the expression for I; from equation (7) is substituted into equa-
tion (6) and equation (L) for %9{ is used, the following equation is
obtained: .

eg-i(g%+n1) =%g‘—I;En(H+l)(J-M)+L(m+l)+N(H-m)] +
' o
.:luzn(J-M) -N-(m+l)f/ fmqng-fdxz‘ +

Lfatr - 1) - ¥+ ng] (8)
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where X dN &H 4.5 been used. Equation (8) for 6 s applicable
dx

dx dH dx
both to two-dimensional flow and to flow over a body of revolution.

In equation (8) all the integrals, except the one involving the
shear ratio g, are functions of H, m, and n only. For the present
no restrictive assumptions regarding the shear are made. The form of
the kinetic-energy equation for a single-parameter family of velocity
profiles is obtained from equation (8) by placing m =1 and n=0
and dividing by N'(H) = K'(H). Thus,

0 = = el e e - — -
dx K' Uadx " o2

The symbol K represents the ratio of the kinetic-energy thickness

o]
f (1 - £2)f dy +to the momentum thickness. Note that in the derivation
0]

of equation (9) from equation (8), the assumption of a single-parameter
v,
family of curves is not restricted to the case EO = 0.

Restriction of General Equation to Power Profiles

The data in figure 1 show that the power profiles defined by f = ;P
are a good approximation to the "standard" profiles derived by fairing
experimental date (reference 10). Equation (8) can be further developed
by using the assumption that £ = {P. After some fairly lengthy calcula-
tions (see appendix B), equation (8) becomes

o & _ k(e + 1)(2p + V)pm + 2) + n + 1]
ax pn+n+1

84U,
U ax

2 1 3
2P[P(m+P;:2+—J (2P+l)+[1’(m"'2)+n+l]f i Edg}pUa

2p(p + 1)[p(m +2) +n+ 1] '@ (10)
pm+ 1) +n U
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As a flrst spproximation the assumption has been made that £ = (P even
v,
when FO £ 0.

The occurrence of the arbitrary positive integers m and n in
-equations (8) and (10) requires an explanation. In order to determine
wvhy m and n appear, equation (8) is written in a different form.. By
meking use of the definitions for N, I, J, M, L, and Q and inte-

grating by parts where necessary in order’ to eliminate terms that con-
tain n2-1, the result is

5/6 1
L o _or [l
5 (m + 1) nfm(f % 5Jo 3w dn) dn

-n(H +1)(J -M) + N(H - m) + L(m + 1) =

5/6
(m+l)f BT H+l)aff £an + £2 - 1:|dq
0

S5/6 -
-n(J-M)-N-(m+l)f/fmnng_:dn=
. (0]

-(m+l)f fm(gn qu+g:)d:r|

and

/e n
J-M) - Q= 1 nem O£y
n( ) -N +n (m + 1) A 1 31]( L[O fdn)dn

e e e e s g A ——— e o ——

—— e ———————— e -



Equation (8) then becomes
6 {15 fae e\ . 0 du 2 3z M volag/ M
8/6 3¢ o [Mar
A " (fa"ﬁ'an; a‘ﬁd")‘”‘

By using the assumption of a single-paremeter family of curves directly in the partlal-
differential equation (1), the following ordinary differential equation 1s cbtalned:

o e ) 28l menk " } @[@@U“ )]
dH=pU2(3"\\/; fd.'q+an +deE 4 (H+l)3n~/; £ dy +Uan 5 £ dn 1_

8

A
B

(1)

&
g3 3 A,
3 omJo OE

(12)

The concept of & gingle-peremeter family of velocity profiles is consistent with equation (1)
and with particular functions for 'To/pUE, g, and f. when the right-hand side of equatlon (12)

is independent of 7. When the right-hand side of equation (12) is indépendent of 17, the right-
hend eide of equetion (11) ie independent of m and n. Equations (11) arnd (12) are then
jdentical.

To obtain an equation for @ g}q that doee not contain either m or n or both, the

functions To/pU2, g, and f must therefore be such that the right-hand side of equation (12)

is independent of 7; the solution of the equation for 6 g then provides a solution of equa-

tion (1). Note that the problem is to find a solution not of equation (1) alone but of

ot

gCTS NI VOVH
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equation (1) and the independent relation for the shearing stress in
turbulent boundary layers; this relation i1s at present unknown.

The nature of the approximation made in the present analysis, in

order to obtain a specific equation for g?ﬂc, mey be clarified by noting
that a specific equation for g—-i is obtained fram equation (8) bif choosing
the functions To/pUa, g, and f and substituting en arbitrary positive

integer for m and an arbitrary positive integer for n. The calculated
distribution of H over a body for arbitrarily chosen functions for

To/pU2, g, emd f is then consistent with the momentum equation and one
of the integral equations for g“-!; For exemple, if m =1 and ‘n = o,

both the momentum and the kinetic-energy equations are satisfled but no
" other ones. If m =0 and n =1, only the momentum and the moment of
momentum equations are satisfied. In the present analysis only the
momentum, the kinetic-energy, and the moment of momentum equations -
equations which have familiar physical meanlng - are used.

As noted previously, equation (11) is independent of m and n if
the functions To/pUQ, g, and f are such that the right-hand side of
equation (12) is independent of 1. In this case a solution of equa-
tion (1) results and the functions Tg/pU2, g, and £ and the calculated

distribution of H satisfy every particular equation obtainsble from
equation (11), (10), or (8) by assigning positive integers to m and n.

Note that m and n cannot both be made zero in equation (8)
because g-%+nl =0 for m=n=0. If m and.n are both zero,

equation (8) becomes O = 0. It is also noted that equations (8) and (2.2)
are valid both for flow over a body of revolution and for two-dimensional
flow.

For m=1 and n = 0, equation (10) leads to the equation for
kinetic energy *

9§=-H(H-l)(311'-1)9du+(3H-l)€i+ -1fl§pasd§)__+

(g+1)(38 -1) Y0
} U

(13)

R O A —_—— —— ~——— -
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where the relation for power profiles 2p + 1 = H has been introduced.
This form of the energy equation can also be obtained from equation (9)
by noting that, from the definition of K and the equation for power
profiles,

K__2(2‘];>+l)= hg
3p+1 3H -1

A comparison of the values of K obtained from this formla and bbtained
from the standard profiles is given in figure 2. .

The equation of moment of momentum for power profiles is obtained
from equation (10) by letting m =0 and n = 1; it is

ed'g=H(H+l)(H2_l)2d—U+(He-l)H+(H+1)fltaédg'r_o_+
dx 2 U ax A e

- 1 | o

In this equation the term involving the shear distribution may be

rewritten as follows:_
1 1
ag a f
— = - g d
j; : ot ¢ 0 ¢

It then involves the mean shear inside the boundary layer.

Attempts to Derive a Relation Governing the Change of
the Form Parameter

In most of the recent analyses of the development of a turbulent
boundary leyer, an empirical relation governing the change of the form
parameter H is usually introduced. It is clear that equation (10)
automatically furnishes such relations if the shear distribution is known.
In this section, three attempts are described to establish such a relation.
These attempts are based on the following simple assumptions for the shear
distribution:



NACA TN 2158 19

dp
(2) The shear distribution depends only on 5 1 hich is equal’
& ,

to the Pohlhausen parsmeter multiplied ﬁy a factor (reference 3)
(b) The shear is constant across the boundery layer

(c) The shear distribution depends only on the form parsmeter of
the velocity distribution

The first two assumptions are used either with the energy equation
in the forms given by equations (9) and (13) or with equation (14) for
the moment of momentum. The last assumption is used with equations (13)
and (14) jointly.

(a) Shear distribution depending only on the Pohlhausen parameter.-
The first assumption follows the original idea. of the method of Von Karmén
and Pohlhausen 1n using polynomial approximations together with the bouna-
ary conditions obtained by successive differentiation of the equations of
motion (reference 3). Fediaevsky (reference 8) appears to have been the
first to introduce it into the investigation of turbulent boundary layers.
When the shear stress through the turbulent boundary layer is assumed to

be a polynomial of fifth degree in § = % satisfying the following bound-
&

ary conditions:

at y=0
. dr _4p 2T
T = TQ,s - = —, —_— =0
oy T P
at y =9
2
T=0, l’=o, B
3%y dy2
the following expression 1s obtained:
g=(1- 03+ (3+nt+32+n0)E (15)
The shear distribution g is a function of § and A, where
vl P1_ oaus e
To ax Udx 8 T,

. e e e e ——— — B ———
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The particular boundary conditions at y = O restrict this development
A/
to the case -69 = 0.

From the shear distribution (equation (15)) the calculstion may be
made of the coefficients P and S. The attempt to calculate P and S
by using the standard profiles together with equations (9) and (15) was,
however, unsuccessful for two reasons. First, the ratio 8/9 , which must
be known, could not be accurately determined from the standard profiles.
Second, for reasonable values of 6/9 s the calculated values of P were
positive for values of H for which P should be negative.

The calculation of the part of P 1ndependent of the shear profile
was then made both for the standard profiles and the power profiles by
meking use of the kinetic-energy equations (equations (9) and (13),
respectively); the comparison is shown in figure 3. The closeness of the
results suggests that it is permissible to use power profiles as an
approximation for calculating P and S. From equations (13) and (15),

P = -H(3H - 1)E[ -1 - 96(3E - 1) (16)
E+5)E+T)E+9

and

S = (3H - 1)EI - 2bo(38 - 1) (17)
) (B +5)(E+T)(H+9)

The functions P and S, given by equations (16) and (17), respectively,

are shown in figure k.

The fact that the equation

o ¥ - m+ g

where P and S are obtained from equations (16) and (17), respectively,
does not predict the behavior of the turbulent boundary leyer is shown as
follows: Let w = O; then, for H greater than approximately 1.5, g'—f:
should be negative. Because S from equation (17) is positive for

H > 1.2, it follows that S?H: is .positive. This conclusion is incorrect;
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therefore, the function for S (equation (17)) is inconsistent with the
known behavior of turbulent boundary layers.

To show that the function for P (equetion (16)) is inconsistent
with the known behavior of turbulent boundary layers, let H ®1.4. By

making g—g positive and ia.rge, g-_-’H-c becomes positive and large because

P given by equation (16) is positive. For positive values of g—_?;’ how-
ever, it is known that g should be negative. The function for P

(equation (16)) is therefore inconsistent with the known behavior of
turbulent boundary layers.

In order to determine whether functions for P and S +that do not
result in obviously incorrect conclusions can be obtained by making the
shear polynomial satisfy a greater number of boundary conditions at the
outer edge of the boundary layer, the shear polynomiel is generalized by
writing

g=(1- C)AE + At + ‘A‘—(A-zll—)(‘zl + A1 - DAL + AL) (18)

The boundary conditions at the surface that are satisfied by equation (18)
are

g = 1 or T = 'ro
dp
3t dy dx
2
é.—g. =0 or a——a;r =0
3t © ¥R
At y = 5, the conditions that are satisfied are
g=0
og
=0
R4
2
a_g =0
ot
A-1g
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1
In order to evaluate the integral f tP g—g d{ in equation (13), the
0

term g% is written as

og _ -
Y

where

gL = (1 - Q)A[A +AQA + 1)§] - A(1 - g)A-ll:l + AL + A§A2+ 1) Ca]

and, for A 21,

gy = (1 - DAL+ 2at) - ta(L + A0 - O

By using the expression for g, the equation obtained for S 1is

S=dw+1F%P+l- Acp i,

3p +1 (A+p)(A+p-l)(A+p-?)---(p+l) P
- A . _ AA+1)(p+1) ]} . (19)
A+1+p 2(A+2+p)(a+1+0Dp)

By using the expression.for gp the equation for P is found to be

P =-2(2p +1)(3p + 1)2{ 2 _

3p+1
At(p + 1) 1 .
A+p@A+p-1)A+p-2) ... (p+1)|A+1+p

A(p + 1) :l} (20)
(A +2+7p)(aA+1+0D) .
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To avold positive values for S obtained from equation (19) for H < 3,
it is found that A must be 1 in the expression for g, It is also
found that to avoid positive values for P in equation (20) for H >0,
A must be « in the expression -for gp. The values for S and P
then become ’

g . (3E - 1)(E - 1)(F - 3)

H+5 (21)

P=-H(H - 1)(3H - 1) . (22)

The expression for P (equation (22)) is the same as the coefficient of

%g—g in equation (13); letting A —> = makes the coefficient of A in
equation (18) become zero. The shear profile then contributes nothing

to the coefficient of %g—g in equation (13).

Equations (21) and (22) for S and P, respectively, were tested
by making e computation of H and 6 for the pressure distribution

given in table I of reference 10. The computation began at é = 0,075
with the values given in teble I of reference 10. The equations used are

dx H+5

and

ae
&="(H+2)‘D+¢

The equation for g—}% is the Von Kérmsn momentum equation. The equation

for ¢ was obtained from reference 17 and is
0,006535 ,
g - 000
Rg

The calculated distribution of. H along x was far from the experimental
curve. -

In an attempt to reduce the sensitivity of the equation for 6 g—_’-Hc
to the shear distribution, the moment of momentum equation (equation (14)),

e e e e e - m i  —————— P et St . g ot PN
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in which the shear appears in the coefficient of ¢ only as & mean
value, is used. When the generalized expression (equation (18)) is used
for the shear distribution g +the result obtained is

a8 _ | H(E - 1)("@ + 1)2 3H(HE + 1)3
&= 2 +(A+2)(A+3;Jm+

°- DE 31§H++3l) ¢ (23)

where V¥ =0 as required by equation (18). To keep the coefficient of
negative for all positive values of H, A must equal o in the coeffi-
cient of ®. The shear distribution is then independent of the pressure
gradient. To make the coefficient of § negative for values of H

near 3, A must have the smallest value that it can take; therefore,

let A =1 in the coefficient of @. 'Equation (23) then becomes

o % _H(B2 - 1)@ + 1), - 1)§H -3)g (2k)

A calculation for the example in table I of reference 10 with equa-
tion (24) resulted in a computed curve for H +that was far from the
experimental curve.

(b) Assumption of constant shear across the boundary layer.- All the
computations of H have led to values of H much larger than the experi-
mental values. Therefore, in order to reduce the calculated values of H
it is necessary to increase S. In order to increase S, the assumption
of constant shear across the boundary layer is made. For constant shear

it can be shown that
fl§ % ag - -
o -~ ot

by letting g = (1 - ¢)B and taking the limit of the integral as
B—> 0. Equation (1), after the assumption of constant shear is intro-
duced, becomes

aH _ -H(H + 1)(82 - 1) 2 2
95:_:_ > o - (B2 - 1)¢ + (8= - 1)¥

e e —e———— v+ o ——ep————— - ——— 4 ——————
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B ) au -
In order to meke = 0 at H = 1.286 for = 0, the coefficient

of § was arbitrarily changed to HZ - 1.2862,- The equation then
becomes o

0 & . -H(H + l;(ﬂa =1y - (B2 - 1.653)¢ + (B2 - 1V - (25)

This equation was used for the computation of H with ¥ = O, and the
results for the example given in table I of reference 10 are shown in

figure 5.

The assumption of constant shear across the boundary layer was also
combined with the kinetic-energy equation. When the power profiles and
the assumption of constant shear are used in equation (13), the kinetic-
energy equation becomes

dH
de

E(H - 1)(3H - Lo - (& Jéﬁ»ﬂ =1)g , (E+ 1)£3H - 1),

The function -H(H - 1)(3H - 1) is shown in figure 3 and the function

=(H - 1;(3H ~ l), in figure 6. When the standard profiles are substituted
for the power profiles and the assumption of constant shear is made, the
kinetic-energy equation (equation (9)) becomes

edii=1c(*f[-L),J)_K-a,r,;_K-l\lr
dx X' K K'

where the function Ii(-H—K'{-L)- is shown in figure 3 and the function

k-2 is shown in figure 6. The results of these calculations of H

K' )
(with ¥ = 0) are shown in figure 7. In this case, the use of power
profiles makes the result somewhat different from that obtained by using
the standerd profiles.

moment of momentum equations.- Lt seems obvious that, if equations

(c) Determination of S by the simultaneous use of the energy and
(132
and (1%) were exact, the coefficients of ®, @, end ¥ in equation (13)
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would be equal to the coefficients of ®, @, and ¥ in equation (1%).
The ratio of the coefficients of ® is

H(E + 1)(E2 - 1)
_ 2 _ (B +1)2
-H(E - 1)(3E - 1) 2(3H - 1)

(H +1)2
2(3E - 1)

The curve of is given in figure 8 and is seen to be close to

unity.
The ratio of the coefficients of V¥ is

W(E2 - 1) = WE - 1)
(H+1)(3-1) 3E-1

is also given in figure 8. The values are far

The curve of -E;E—'——l—)

H - 1 .
from unity for small values of H but become equal to unity for H = 3.

Equating the coefficients of ¢ results in

1 =1
(32-1)[n+(n+1)f0 cg-iagl:(gm-l)%a,:!%lfl ggé"g;%dgl
0]

or
13 (3E - 1)2 1.Ea
2 _ og L) 2 98 3¢ = H2(3 -
(2 1)<H+1)j; ¢ Fap - j;z_: % 4t =123 - 1) (26)
Now let

fl og ¢ )
%8 at = bH + cH
o §B§ a + + c
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and
H-1

b}
t2 24t =3+ g+ 1B
fo ot

When the shear distribution is assumed to depend only on H, the integrals
in equation (26) are functions of H alone. Because equation (26) is
then an identity, the coefficients of the various powers of H can be
equated to zero. The resulting equations are:

For]i[0
4
-a.-2-0
for Hl
q
-a -b + -==0
. 3J 2
for H_2
9 1
-b - - + - - =
a c 2.3 3a 5 3
for H3
a+b-c--92—q+3'l.=-1
for EH*
2
b+c—21 0
for H5
c=0
The results obtained are:
o =28
128
p = 180
128
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- 26
J =158
- 32
1% 18
%o
t=-o8
Therefore,
fl (¢ Eap -T2
0 of 32
and
H-1
fl (5 3qp o T+ @+
.14 16

Equation (1k4), the moment of momentum equation, becomes

o & _ H(E? - 1)(E+21), (B -1)(38 - 1)(7 + 228 + 1502) 4
dx 2 32 d

(22 -~ 1) (27)

and equation (13), the energy equation, becomes

- 35 g+

o & -H(H - 1)(3H ‘_ o - (7 - l)(3H. - 1)(7 + 22H + 15H2)
(B +1)(3H - 1),
L

The variation of H with x for the initisl values and the pressure
distribution given in table I of reference 10 was computed by using a
modified form of equation (28).- In order that g—g =0 at values of H

in agreement with experiment when ® = O, the coefficient of § in
equation (28) was replaced by

(E - Eo)(3E - Hy) (T + 228 + 1582)
32

(28)
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where
Ho, = Ho(Rg)

The variation of H, with Rg was calculated from the equation

logyo H, = 0.5990 - 0.1960 log)g Ry - 0.0189 (Logyg Re)?

which was derived to represent a faired curve through the experimental
data (see fig. 9); the data were obtained from reference 13 and from
British results that are not gemerally available. The result of a compu-
tation of H for ¢ =0 and with equation (28) modified as follows

6% = H(E - 1)(3H - 1)o - (E - Ho)(3H - H§;(7 + 220 + 15HC) g |

B I - 1)y (29)

is given in figure 10.

Assumptions (b) and (c) lead to somewhat better results than assump-
tion (a) although they are still not as satisfactory as those obtained
from the purely empiricel relations introduced in references 10 and 12.

It is clear that this difference is caused partly by the inaccuracy of the
simple assumptions about the shear distribution and can be improved by
using better descriptions. However, in view of the limited present know-
ledge of the shear distribution, it does not seem worth while to make
more complicated assumptions.

It may be noted that the final equations obtained for the change of
the form parameter by the three assumptions are all of the form

) g = P(H)o + S(H)@

T
where o = % g; and @ = -95. This form is used in reference 12, but a

pU
different form is used in reference 10.
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Investigation of Energy Equation

Since none of the three assumptions for the shear distribution .
results in.a dependable equation for %, an investigation is made to
determine whether a result common to the three a.s_smnptions s namely that
the coefficient of T,/pU? in the equations for g-ii{ is a function of
H alone, is very far from true by using experimental data and the
kinetic-energy equation without any assumption for the shear.

If no assumptions other than the boundary-leyer assumptions are
made and if in equation (6) n =0 and m = 1, the result is

5/6 ,
9%='-¢6(+2°/; fg-%d'r» + ofE - 1)X + ¥(1 - K) (30)

If the assumption of a single-parameter family of curves is made
(£ = £(n,H)), then K = K(H), and equation (30) becomes

/6
K+2f fa—gdn

o @H _ o on H-1 1K
ed—_}-[—-¢ = + - K+“"T
or, for ¥ =0,
dH_'
o S8 - gr(E)(t + o) (31)
where
_-(E - 1)K
k(H)——————K'
¢ = -3
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Iflthe assumption is made that g = g(q,H), then f = f(g,H) and
f f dg is a function of H only. Therefore, &, = §o(H). Equation (31)
0

then becomes

o & = gr(E) [t + o] (32)

. , 1
In order to obtain an estimate of the quantity 1 - I% f £ dg under
0

the assumption that f = f(g,H), reference 12 is used. Equation (7) of
reference 12 may be written as

6 & = g (E) [t - 2.065(x - 1.4)] ‘ (33)

.

vhere

kl(H) = 65 (H-l. ,-I-)

Note that Garner's equation (equation (33)) has the form the kinetic-
energy equation takes when the agsumptions that £ = £(n,H) and that
g = g(n,H) are used in the 'kinetic-energy equation. The kinetic-energy
equation (equation (31)) can also be placed in the form of equation (32)

when the more general assumption that g = %3 Fo(n,H) + F1(n,H) is made
for the shear distribution. For the purpose of obtaining an estimate of

, 1
the value of 1 'iac' j(; £ dg, the quantity £ +&(H) in equation (32)

is assumed to be identical with the quantity ¢ - 2.065(H - 1.4) in
equation (33). Then

Eo(H) = -2.065(H - 1.%)
end for H = 1.5, for example, .

&(H) = -0.2065

1
1 2 _

therefore,
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or *

1
1l - f £ dg = -0.1032
0

R

Therefore 1 - 1-2{- \/‘1 f dg 1is the difference between two quantities, each
0

of which is much larger than their difference. It follows that, in order
to determine £,(H) for values of H mnot close to separation with any
accuracy, f and g must be known with relatively good accuracy.

It may be noted that the moment of momentum equation is also sensitive
to g. This sensitivity can be seen by writing the coefficient of @ in

equation (14) as
1
(82 - 1) (H+1)(l- dg)_l
fo e

When it 1s noted that the integral fl g d¢ is of the order of unity
0

and that H lies between 1.2 and 2.6, the sensitivity of the coefficient
of § to g becomes clear.

In an attempt to determine whether §o is determined mainly by H,
all the data that were used in reference 10 were used to compute §o by
making use of equation (32) in the form

E(E) = %X _ &

The surface-friction coefficient ¢ was calculated by the formula
(from reference 1T)

g = 0.006535
R91/6

and k(H) was calculated by the expression obtained from the moment of
momentum equation
_H(B2 - 1)(H + 1)

2

()

The values of £ plotted against H are given in figure 11. The effort
to determine whether £y 1is a function mainly of H is inconclusive.



NACA TR 2158 33

B ang T

At least part of the scatter occurs because = = Yere obtained

from curves faired through experimental points. In addition, the cal-
o 4H

culation of &, requires the subtraction of & from —8X_ an opera-

gr(H)

tion which further decreases the accuracy of the calculated values of §°. .
DISCUSSION

Although equation (6) is valid whenever the boundary-layer assump-

tions are valid, the equations for g—JH: that result after additional

assumptions are made do not lead to good agreement with experiment. The
first of the additional assumptions made is that all velocity profiles
of the turbulent boundary layer belong to a single-parameter family of
curves. The experimental data of references T, 10, 11, 1k, and 15
substantiate this assumption.

The second assumption is that the single-parameter family of curves
can be approximated by power profiles. The data in figure 1, in which
velocity profiles are compared, and also the data in figures 2 and 3, in
which K and P are compared, show this assumption to be good, at least
for H <1.8.

From the date in figures 1 to 3, it is inferred that power profiles
can be substituted for the standard velocity profiles without greatly
affecting the calculated distribution of H against x for H <1.8.
To test this Inference, the kinetic-energy equation was used with the
assumption of constant shear across the boundary layer; the result is
shown in figure 7. As expected from the data of figures 1 to 3, the
effect of the substitution of power profiles for the standard profiles
is noticeable only for H > 1.8. It thus appears that the inaccuracy of

the equations for % that were tested is caused mainly by the surface-

friction law that was used and by the assumed shear distributions rather
than by the use of the power profiles.

The data of ‘references 12 and 15 show skin frictions that increase
strongly in the region upstream of the separation point before dropping
to zero-at the separation point. On the other hand, the skin-friction
date presented in reference 14 indicate that the skin friction falls
monotonically to zero as the separation point is reached. In the present
anslysis a skin-friction lew obtained from experiments on flat plates is
used. It is therefore probaeble that part of the inaccuracy in the
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equations used to calculate H is caused by the use of a relation for
the skin friction that does not give correct values when there are
pressure gradients along the surface.

The assumptions for the shear distribution that were made to obtain

a specific equation for % were

(a) The shear distribution depends only on the ratio of the pressure

5 4Py 5w
gradient to the skin friction — — or --—
To ax 0g

(b) The shear is constant across the boundary layer

(¢c) The shear distribution depends only on the form parameter of
the velocity distribution /

Because none of these simple assumptions is derived from a knowledge of
the details of the turbulent flow, it is not likely that any of them are
valid. Vhen it is recalled that the coefficient of ¢ in both the
kinetic-energy and the moment of momentum equations is sensitive to the’
ghear distribution, it is not surprising that a reliable equation for

aH was not found.
dx

In order ‘to obtain a reliable equation for g—g from equation (8)

it thus seems necessary to calculate the surface shear and the shear
distribution across the boundary layer more accurately than in the
present analysis. Efforts should therefore be made to understand the
mechanics of turbulent shear flow sufficiently well to provide an inde-
pendent relation for the shearing stress that will predict the behavior
of turbulent boundary layers when used with the Prandtl boundary-layer

equation (equation (1)).
CONCLUDING REMARKS

A general integral form of the boundary-layer equation is derived

from the Prandtl partial-differential boundary-layer equation. The
general integral equation, valid for either 1amina.r or turbulent incom-

pressible boundary-layer flow, contains the 'Von Kdrmén momentum equation,
the kinetic-energy equation, end the Loitsianskil equation as special
cases. ’
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In an attempt to obtain a practical method for the calculation of
the development of the turbulent boundery layer, use is made of the
experimental finding that all the velocity profiles of the turbulent
boundary layer form essentially a bingle-parameter family. The general
equation is thereby changed to a simpler one from which an equation for
the space rate of change of the shape parameter of the turbulent boundary
layer can be obtained.

The resulting equation for the space rate of change of the velocity-
profile parameter is restricted by the assumption that the velocity
profiles of the turbulent boundary layer can be approximated by power
profiles. Two of the resulting equations are used to calculate the dis-
tribution of the profile shape parameter over an airfoil for one experi-
mentally determined pressure distribution. Although different assumptions
were tried for the shearing stress across the boundary layer, the cal-
culated distribution of the profile shape parameter did not agree exactly
with the experimental distribution.

An examination is made of the effect of using the experimentally
determined single-parameter family of veloclity profiles instead of the
power profiles on certain functions that occur in the equation for the
space rate of change of the velocity-profile parsmeter. One calculation
of the distribution of the profile shape parameter over an airfoil is
also made for the experimentally determined pressure distribution by
using the single-parameter family of velocity profiles found from experi-
ment. A comparison of the results with those of a calculation made with
the same assumptions except for the use of power profiles shows some
difference near the separation point. It 1s believed, however, that the
apparent lack of reliability of the specific equations used to make the
calculations is caused meinly by the lack of precise knowledge concerning
the surface shear and the distribution of the shearing stress across the
turbulent boundary layer. The present analysis emphasizes the need for
information concerning the shearing stresses in turbulent boundary layers.

Langley Aeronautical Laboratory ‘
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., May 22, 1950
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APPENDIX A
DETATLED DEVELOPMENT OF EQUATION (3)

Equation (2) can be written so that terms of the form wmtl | gl
appear explicitly; therefore, each term will vanish at the outer edge of
the boundary layer. The resulting equation is

1
R - B -] s 2

1 o™ 1 (u’"“l-u“"’l)ud_l_'_g+ 1wl odrg _

m+1 oy m+ 1 T, ax m+1l 71Ty dx

1fn{]dl1+‘£é (A1)
a&x P ¥y

or, after simplification,
[_a_ (e - W)y o O (omd um+1)£| _
ox oy

m+ 1

m+ 1 To p Oy

1 (peed um+l)udro - (% - uIJm) _ul 3T (a2)

Equation (A2) is now multiplied through by y? and integra.ted with
respect to y from y =0 to y = 5. The resulting equation is

1 o [.m+l 1 1 e} 1 41
s L T Lo

m+ 1

ar .
1 _];d_fJ:ynllm+l_um+l)udy_:£\/:yn(um_utfﬂ)d'y=

m+ 1

lf’ ar
) B—y
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or, after simplification and substitution of the formula for the
differentiation of a definite integral

o)
A T P S L - e e

the following equation results:

l 42 nly _ Em+]]E -_]'_.fﬁné- +l gkl y -
==z j:y[ (U) T - =3 o7 ay(Um )y gy
1'Um+2dr°\/‘b n u\&+lfu +1 dU ° u\® _u|n =
m+1l 1, ax Jg yl}-(ﬁ) g - d?h/c:KU' -U]y v

fsumyna—'rdy ‘ (a3)
0 oy

hel o

By integration by parts,

5 o) 1 1 _ 5 1 1 -1
fo y Lo -um"')vdy--nfo(lfn"' - ) gyl gy

and equation (A3) becomes
e Lo T
22 o - e [T e
)

The velocity v can be eliminated from the term

- ) vyl ay -

%

B

:
Y

ay - ‘ (Ak)

2l L

5
j; (U1f1+l - ) yyn-1 gy

by the following development:
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The veloclty v may be written as

ov
Vo= — dy + vo
J:BY

or, by use of the equation of continuity,

« y dr pA
V = - a_u __l-—gf udy'l'VO
o ox ro 4% Jo

Y
féf_‘_";lay y_+_dif(U_u)dy.._dj_y+vo
0 ro dx

0 To dx o

-4
=j:|EJ'a_-J._é-x-U_)+:—i(1-%)dy*y&+EgLY( -%)d:f-

U drofy u
—_—— 1l - = + v
To & J, ( U)dy o

or, after terms are collected and f is substituted for u/U, the
result is

o Y - 2)
v = U’JC == dy + - + — —-—[/\ (1 - f)dy %] + Vo
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to]
The term f (Um"':L - u ]) vyb-1 gy can now be written as
0 ]

T+l - yml) yyn-1 = f gl _ i) o=l o(1 - £)
«—/(;5( “ )vy v 0 ( )yn {‘—/(:y ox ¥
ar A
<g+§;d;9)[o(1-f)dy-y]+vc:}dy

or

5 S Y
gl | ymel) punel g g2 -1f - podl 3(1 - £) ]
L/(; ( u ) dy = U j; y2 (l )l;/(; = dy|dy +

@2 2 [ o[- e oo s

: 5}
v Um+l -1 _ fm+].
0 L v (l ) ay

Now let
f 1 - [ 20 - 1) ] R
0
yn'l 1- fm"'])[ (1 - f)dy]dy = Jont+l
o 0
5
f yo(1 - ) ay = wpl
0 :
and

f yn-l(l - fllH'l)dy = Qon
0




ko . " NACA TN 2158

+]
The term f (Um"'l - um"']) vy?1l @y now becames
0

8 .
f (Um+l - um+1) vyo-l gy = Um+2119n+1 + (c_lll + O drg)Um+1( I - M) oB+L
0

dx rq dx
VoUm+lQ,9n
Now let -
3]
f yn (1 _ flll'l'l)f dy = N9n+l
o -
and

ts]
[ e - o ey = o2
0

Equation (A4) can then be written as

- (Um+2N9n+l + D pmHlp gndl
m+ 1 dx m+ 1 1

3 dr
n au + _I_I_ 0 Um'l'l(J- - M)9n+l + n voum.'l'lwn -
m + l\dx To ax m+1 M

M2 gr o]
1 L.ﬁmen+1+um+l§.]mn+l=lff gmyn OT 40 (a5)
m+l r, d ' dx p Jo oy
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After %; v™enetl 15 expanded and terms are collected, equation (A5) _

becomes

(n+1)1\73—29-c+6(g-n11) + & SMm+2) - a(@ - ) -

L(m + 1)] +:—°-:—_:;9|:N-n(J-M)] -nq%.°=

T

T 5/6 3
-(m + 1) Lf oy 10 gp
pU2 Yo on

where

=
il
@9

h1
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APPENDIX B

SIMPLIFICATION OF TERMS IN EQUATION (8) FOR POWER PROFILES

Calculation of % + oI

. The definition of No®l ig
Nl = f (1 - 1) 5yn ay
0 .

therefore, /
8/6
N =—.j2> (r - £m+1) gy gy

and

==

5/6 .
- gl of _ gm Of| n
[(1 Fit )BH £f(m + 1) BH]n an

-

or

EilE

5/6
= AN - (m+ 2)m g2 o
L an[ (m + 2)f2 ] 48 an
The definition of I6DHL ig
te} Y '
TeR+L _ f (l - fm+l) ( f of dy)yn"l dy
0 0 OoH

therefore,

/6 '
I= ﬁ (L - f‘”l)< of dn)nn'l an
0 0 OH

e h ——e— o~ - ————-
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Then

=

5/6 ) .
‘E-Hﬂ:*/:) %E'(m"'z)fmﬂ]“nd“"'

5/6
n L (1 - fm"‘l) ( j(; g; dn)'qn'l dn (B1)

By integration by parts,

n jj g (- fm”)(ﬁ) " g—; dn)nn'l an = - L/; t3/6[(1 - fm+l)g—§ -

of of | .
(m + 1)£® a-? /: - dn] 2 dan ‘ (B2)

When equation (B2) is substituted into equation (Bl), the following
equation is obtained:

8/ =)
dn _ of of of
Eﬂ+nI-(m+l)L qnfm<anj; S o - faH)n

Use is now made of the power-law assumption

o0 (gf

Then

df 1-2p2 , tPlog ¢t

oE 2(p + 1)(2p + 1) 2

NS g R 1-207  h2p 1|tPPlogt 2 |L
aH“ Y- o > 1 >
2 P+ (p + 1)

S

(p + 1)2(2p + 1)

[ 1-207  2p +§2plog§i|
2(p + 1)(2p + 1) 2

T R S ——




After a lengthy manipulation, % + nI is found to be

m+1 (p+1)%2p + 1)%pm + n)

2
ptl [_i:(m +2) +n+ 1]2

+nl =

=]=

where use has been made of the following equation:

(p+1)(2p + 1)
P

8
6

Calculation of N

The definition of NoB+l ig
5
N9n+l = f (l - fm+l) fyn dy
0 .

When f = tP is used, the equation for N 1is

=‘ (‘S_)n+l P(m + l)
6 E)(m+2)+n+l](p+n+l)

or
_ _(m+1)(p + )P (2p + 1)+
pn[p(m+2) +n+f_](p+n+1)

Calculation of J '

From the definition of JgB+l,

JemL =f08(1 - fm*l)[j:r(l - f)do]yn-l ay
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When f = ¢P, the equation for J is

p+1l

7= (.g)n+lb/:~'|; _ Cp(m+lﬂ (§ - gﬂl_)cn-l a

.or, after a lengthy manipulation,

T (p+ l)n(2p+l)n+l(m+l) (p+ 1+ n) E)m+ n+ 2(p+ 1)] + p(m+1)+1 +n
pn-1 : (n+1)(p+1+n) E>(m+1)+-n+}] |—£(m+l)+p+1+£l
Calculation of M

From the definition of MeR*l

s)
M9n+l =\jp (i _ anJ)yn ay
0

When £ = P, the equation for M is

(P + l)n+l(2p + l)n+l

Pn(n+l)[p(m+l) +n+]_-.]

M=(m+1)

Calculation of L

From the definition of 1o0¥1l
Lo+l - fé @ - L) ey? gy .
0

When f = QI.’ ; the equation for L 1is

(P + l)n+l(2p + l)n+l
PP(p +n+ 1)(pm + n + 1)

L=(m-1)




Caleulation of ME -m) - n(F - M)(H +1) + (m + 1)L

danN
ﬁ‘l’ﬂl

Fram the expressions for J and M, the expression for J - M is

J_M=(2+l)n(22—+l)n+l(m+1) (p+1+n)@+n+2(p+l)] +|:p(m+l)+l+nl

ph-1 b+ )(p+1+n)fp@+1) +n+1](pm+1) +2 +1+n]

(p + 1)n+l(2P + 1)n+1
Pn(n+1)Ep(m+1) +n+1]

After a lengthy simplification, the result is

(n + 1)

~(m + 1)(p + 1)™2p + 1)1
'pn(p+1+n)|:p(m+l) +p+1+n]

Jd-M=

or

on(m + 1)(p + 1)%*(2p + 2)2*

-n{J - M)(H + 1) =
(e +1+n)|p(m+1) +p+1+n]

where H =2p + 1 was used. The expression obtained for N(H - m) + (m + 1)L is

N(E ~m) + (m + 1)L = (m + 1)(p + 1)™*(2p + 1) op(pm + m + n)
p(p + 0+ L[p@+2) +n+ (m+n+l)

QCTS NI VOVN



and the expression cbtained for N(H - m) - n(J - M)(E + 1) + (m + 1)L is

2(m +1) (p+1)21(2p + 1)0+L E:(pm +n+1) +p(pm + m + nil

NE -m) -n(f -M{E+1) +@m+1)L=
pn(p+l+n)Eg(m+2)+n+JJ(pm+n+1)

By subgtitution and simplification

N(E -m) - n(J - M)(E+1) + (m+ 1)L _ -bn(p + 1)(2p + V[pm +2) +n+1

daN . n 4+ n+ 1
d.’E[+nI

It cen alsc be shown that

/0
'-N+n(J-M)-(m+1)f0/ nnfm?agdn

dN
|+ nT

[p(m+2)+n+gf gIﬂMBE }

Evaluation of -N + n(J - M) + nQ

- " E)(m+2)+n+]:|{2p+l+
T + n

From the results for N and J - M

-(m + 1)(p + 1)%(2p + 1)B*
pnl_i:(m +2)+n+ ];.]

N+ n(T -M =

-@GTS ML YOVN

Ly
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For Q, the development is:

5 .
an =‘f0 (1 _ fm+l)yn-l ay

and with f = CP, the following expression is obtained for n ;é 0:

Q=12+l (p + 1)2(2p + 1)1
a pn"ll_i)(m + 1) + :g

Then, by substitution and simplification, for n £ 0,

~(m + 1)(p + 1)*(2p + 1)%(zm + n)
pn[p(m+ 2) +n+:§|[p(m+ 1) +n]

(B3)

-N + n(J - M) + nQ'=

If use is made of the previously derived result that n@ =1 for n =0 ,
the following equation is obtained for n = O:

_mlp +1) . (BY)

-¥ + n(J - M) +nQ =
p(m +2) + 1

If n 1is placed equal to zero in equation (B3), equation (B4) results;
therefore, equation (B3) is valid for n =0 as well as n # 0.

Then, for all values of n,

N +n(7 - M) +nq _2(p + Lp[p(m +2) + n+ 1]

av pm + 1) +n
dH+nI
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Figure 1.~ Comparison of experimental and power velocity profiles.

gaTS ML VOVN



el
y ;
rd
7

L~

L~

.

H Calculated Experimental
q 1.886 o :
/] .
A{/’ 2.057 a —— e
P / 2.277 O e _—
(o]
] T.::
3 4 5 6 7
1

(b) H =1.886, 2.057, and 2.27T.

Figure 1.~ Continued. .

gaTS ME VOVN



e e e A A e —— e e e

1.0

2

(e) H = 2.465 and 2.701.

Figure 1.~ Concluded.

/f
i
e
/b/
P
7
/|
/ H Calculated Experimental
C// 2,465 o
21,
/ (d 2.70L
/ / . . ] —
/|
117
e
(i}
5 A
1
1 2 L 5 6 T
nl

85TS NI VovN



2.0
\ Paver velocity yrofiles
1.9 L\ —— =@ == Experimental velocity pmf:l.lear———
1.8 \\
"N
l-T {\
~N
NG
1l6
\@l \\
1.2 = =
1.4 1
1.0 1.2 1.k 1.6 1.8 2.0 2.2 2.k 2.6

H

Figure 2,- Velues of K for experimental and power velocity profiles.
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Figure 3.~ Values of P from energy equation.

For power profiles,

P = -H(H - :_I.)(3E ~ 1); for experimental profiles, P = %l—)
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g - _ (E-Ho)(3E - Ho)(T7 + 22H + 15H2)
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